Ставропольский край

Муниципальный этап всероссийской олимпиады школьников 2017/2018 учебного года

Математика

11 класс

1. Найдите все положительные корни уравнения $x^x + x^{1-x} = x + 1$.

Решение

Так как x > 0, то $0 = x^{2x} + x - x^{x+1} - x^x = x^x(x^x - 1) - x(x^x - 1) = x(x^x - 1)(x^{x-1} - 1).$ Значит, x = 1.

Ответ x = 1.

2. В первый день Маша собрала на 25% ягод меньше, чем Ваня, а во второй – на 20% больше, чем Ваня. За два дня Маша собрала ягод на 10% больше, чем Ваня. Какое наименьшее количество ягод они могли собрать вместе?

Решение

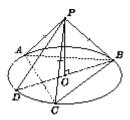
Маша в первый день собрала $^{3}/_{4}$, а во второй - $^{6}/_{5}$ от числа ягод, собранных в эти дни Ваней. Пусть Ваня собрал в первый день 4x ягод, а во второй - 5y, тогда Маша собрала 3x и 6y ягод соответственно. По условию $3x + 6y = ^{11}/_{10}$ (4x + 5y). Это равенство легко преобразуется к виду 14x = 5y. Теперь ясно, что x кратно 5, а y кратно 14, значит, наименьшие натуральные числа, удовлетворяющие этому равенству: x = 5, y = 14, а общее количество ягод $^{21}/_{10}$ (4x + 5y) = 189.

Ответ 189 ягод

3. Найдите угол при вершине осевого сечения прямого кругового конуса, если известно, что существуют три образующие боковой поверхности конуса, попарно перпендикулярные друг другу.

Решение

Из условия задачи следует, что в данный конус может быть вписана треугольная пирамида PABC, у которой равны боковые ребра PA, PB и PC, и все плоские углы при вершине P — прямые. Следовательно, эта пирамида—правильная и ее высотой является отрезок PO, где O — центр основания конуса. Тогда искомый угол BPD вдвое больше угла BPO. Пусть PB = b, тогда $BC = b\sqrt{2}$; $OB = \frac{BC\sqrt{3}}{3} = \frac{b\sqrt{6}}{3}$. Тогда $sin\angle BPO = \frac{OB}{PB} = \frac{\sqrt{6}}{3}$; $\angle BPD = 2$ $arcsin \frac{\sqrt{6}}{3}$. Если вычислять искомый угол по теореме косинусов из треугольника BPD, то ответ можно получить в другом виде $\angle BPD = arccos(\frac{1}{3}) = \pi$ - $arccos(\frac{1}{3})$. В любом случае искомый угол — тупой.



Ответ 2 $\arcsin \frac{\sqrt{6}}{3}$.

4. Докажите, что если α , β и γ — углы остроугольного треугольника, то $sin\alpha + sin\beta + sin\gamma > 2$.

Решение

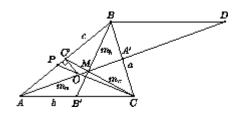
Первый способ ("тригонометрический"). Докажем сначала вспомогательное утверждение: Если α , β и γ — углы произвольного треугольника, то $\cos^2\alpha + \cos^2\beta + \cos^2\gamma + 2\cos\alpha\cos\beta\cos\gamma = 1$.

Действительно, так как $\gamma=180^o$ - $(\alpha+\beta)$, то $\cos^2\alpha+\cos^2\beta+\cos^2\gamma+2\cos\alpha\cos\beta\cos\beta\cos\gamma-1=\cos^2\alpha+\cos^2\beta+\cos^2(\alpha+\beta)-2\cos\alpha\cos\beta\cos\beta\cos(\alpha+\beta)-1=\frac{1+\cos2\alpha}{2}+\frac{1+\cos2\beta}{2}-1+\cos^2(\alpha+\beta)-2\cos\alpha\cos\beta\cos(\alpha+\beta)=\frac{\cos2\alpha+\cos2\beta}{2}+\cos^2(\alpha+\beta)-(\cos(\alpha+\beta)+\cos(\alpha-\beta))\cos(\alpha+\beta)=\cos(\alpha+\beta)\cos(\alpha+\beta)-\cos^2(\alpha+\beta)-\cos(\alpha+\beta)-\cos(\alpha+\beta)=0$.

Так как данные углы— острые, то из доказанного утверждения следует, что $\cos^2\alpha + \cos^2\beta + \cos^2\gamma = 1-2\cos\alpha\,\cos\beta\,\cos\gamma < 1$, поэтому $\sin^2\alpha + \sin^2\beta + \sin^2\gamma = 3-(\cos^2\alpha + \cos^2\beta + \cos^2\gamma) > 2$.

Так как для любого угла x треугольника $sin\ x > sin^2\ x$, то $sin\alpha + sin\beta + sin\gamma > sin^2\alpha + sin^2\beta + sin^2\gamma > 2$, что и требовалось доказать.

Второй способ ("геометрический")



Пусть a , b и c — длины сторон остроугольного треугольника ABC , R — радиус его описанной окружности. Умножив обе части доказываемого неравенства на 2R и используя следствие из теоремы синусов, получим равносильное неравенство: a+b+c>4R .

Пусть m_a , m_b и m_c — длины медиан AA', BB' и CC' треугольника ABC, тогда $a+b+c>m_a+m_b+m_c$. Действительно, продолжив, например, медиану AA' на ее длину, из треугольника ABD получим, что $b+c>2m_a$. Аналогично, $a+c>2m_b$ и $a+b>2m_c$. Сложив почленно три полученных неравенства и разделив на 2, получим требуемое. Отметим, что доказанное неравенство справедливо для любого треугольника. Докажем теперь, что в остроугольном треугольнике $m_a+m_b+m_c{\geq}4R$. Пусть M- точка пересечения медиан, а O- центр описанной окружности остроугольного треугольника. Так как O расположена внутри треугольника ABC, то она принадлежит одному из трех треугольников AMB, BMC или CMA. Без ограничения общности можно считать, что это треугольник AMB, тогда $AM+BM \geq AO+BO$, то есть $\frac{2}{3}m_a+\frac{2}{3}m_b \geq 2R \Leftrightarrow m_a+m_b \geq 3R$. Продолжим отрезок CO до пересечения с AB в точке P. Так как угол OC'P- прямой, то угол C'OP- острый, поэтому угол COC'- тупой. Следовательно, $CC_1 \geq CO$, то есть $m_c \geq R$.

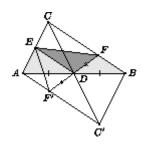
5. В треугольнике ABC точка D — середина стороны AB . Можно ли так расположить точки E и F на сторонах AC и BC соответственно, чтобы площадь треугольника DEF оказалась больше суммы площадей треугольников AED и BFD?

Решение

Первый способ.

Рассмотрим произвольный треугольник ABC с точками E и F на сторонах AC и BC . Пусть C' — образ точки C, а F' — образ точки F при симметрии с центром в точке D (см. рис. 1). Тогда четырехугольник ACBC' — параллелограмм, а точка F' лежит на его стороне AC' . Так как $\angle EAF' = \angle EAB$ + $\angle BAF' = \angle CAB + \angle CBA < 180^o$, то четырехугольник AEDF' — выпуклый (это следует также из того, что EAF — угол параллелограмма).

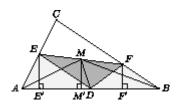
Треугольники AF'D и BFD равны, значит, $S_{AEDF'} = S_{AED} + S_{AF'D} = S_{AED} + S_{BFD}$. Кроме того, так как D — середина отрезка FF', то $S_{DEF} = S_{DEF'}$. Так как $S_{AEDF'} > S_{DEF'}$, то $S_{AED} + S_{BFD} > S_{DEF}$, следовательно, указанным образом расположить точки невозможно.



Второй способ.

Воспользуемся вспомогательным утверждением: пусть в четырехугольнике $ABCD \angle A + \angle B < 180^{\circ}$, тогда $S_{BDA} > S_{CDA}$ (см. рис. 2). Действительно, в силу заданного условия, прямая, проходящая через точку C и параллельная стороне AD пересекает прямую AB в точке P, лежащей между A и B. Тогда $S_{BDA} > S_{PDA}$, а треугольники PDA и CDA равновелики, так как сторона AD у них общая и высоты, проведенные из вершин P и C равны.

Рассмотрим теперь конфигурацию, заданную в условии задачи (см. рис. 3). Пусть M — середина отрезка EF, точки E', M' и F' — ортогональные проекции точек E, M и F на прямую AB. Тогда MM' — средняя линия трапеции EFF'E', поэтому $MM' = \frac{EE' + FF'}{2}$. Следовательно, $S_{AED} + S_{BFD} = \frac{AD \cdot EE'}{2} + \frac{BD \cdot FF'}{2} = \frac{AB}{4}$ (EE' + FF')= $\frac{1}{2}AB \cdot MM' = S_{AMB}$.



Проведем общую медиану MDтреугольников AMBEDF. четырехугольнике ADME рассмотрим сумму углов EAD и MD, а в четырехугольнике BDMF – сумму углов FBD и MDB . Хотя бы одна из этих сумм меньше, чем 180^{o} . Действительно, предположим противное, тогда (\angle CAB + ∠CBA + 180° ≥ 360°, что невозможно, так как сумма двух углов треугольника меньше, чем 180° . Без ограничения общности можно считать, что $\angle EAD + \angle MDA < 180^{\circ}$. Тогда в четырехугольнике $ADME\ S_{ADM} > S_{EDM}$. Так как медиана треугольника делит его площадь пополам, то $S_{AMB} > S_{EDF}$, то есть указанным образом расположить точки нельзя.

Ответ так расположить точки нельзя.